Skip to main content

A New Bitcoin Address Association Method Using a Two-Level Learner Model

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2019)

Abstract

Users in the Bitcoin system adopt a pseudonym-Bitcoin address as the transaction account, making Bitcoin address correlation analysis a challenging task. Under this circumstance, this paper provides a new Bitcoin address association scheme which makes address tracing possible in Bitcoin systems. The proposed scheme can be used to warn relevant institutions to study more secure encryption algorithms to protect users’ privacy. Specifically, the important features of a Bitcoin address are extracted. After that, to reduce the computational complexity, we transform the clustering problem of addresses into a binary classification problem in which we integrate the features of two Bitcoin addresses. A novel two-level learner model is then built to analyze if the two Bitcoin addresses are belonging to the same user. Finally we cluster the addresses belonging to the same user accordingly. Extensive experimental results show that the proposed method outperforms the other address association schemes, which use deep learning models or heuristics, and can achieve an increase by 6%–20% in precision and by 10% improvement in recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ShenTu, Q.C., Yu, J.P.: Research on anonymization and de-anonymization in the bitcoin system. arXiv preprint arXiv:1510.07782 (2015)

  2. Brenig, C., Accorsi, R., Müller, G.: Economic analysis of cryptocurrency backed money laundering. In: ECIS (2015)

    Google Scholar 

  3. Fanusie, Y., Robinson, T.: Bitcoin laundering: an analysis of illicit flows into digital currency services. Center on Sanctions & Illicit Finance memorandum, January 2018

    Google Scholar 

  4. Liao, K., Zhao, Z., et al.: Behind closed doors: measurement and analysis of CryptoLocker ransoms in bitcoin. In: 2016 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–13. IEEE (2016)

    Google Scholar 

  5. Meiklejohn, S., Pomarole, M., et al.: A fistful of bitcoins: characterizing payments among men with no name. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)

    Google Scholar 

  6. Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis. arXiv preprint arXiv:1502.01657 (2015)

  7. Ermilov, D., Panov, M., Yanovich, Y.: Automatic bitcoin address clustering. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 461–466. IEEE (2017)

    Google Scholar 

  8. Nick, J.D.: Data-driven de-anonymization in bitcoin. Master’s thesis, ETH-Zürich (2015)

    Google Scholar 

  9. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and privacy in social networks, pp. 197–223. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4139-7_10

    Chapter  Google Scholar 

  10. Ron, D., Shamir, A.: How did dread pirate roberts acquire and protect his bitcoin wealth? In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 3–15. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_1

    Chapter  Google Scholar 

  11. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2

    Chapter  Google Scholar 

  12. Kaminsky, D.: Black ops of TCP/IP. Black Hat USA, p. 44 (2011)

    Google Scholar 

  13. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. In: 2015 IEEE Symposium on Security and Privacy, pp. 122–134. IEEE (2015)

    Google Scholar 

  14. Mastan, I.D., Paul, S.: A new approach to deanonymization of unreachable bitcoin nodes. In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 277–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7_13

    Chapter  Google Scholar 

  15. Shao, W., Li, H., Chen, M., Jia, C., Liu, C., Wang, Z.: Identifying bitcoin users using deep neural network. In: Vaidya, J., Li, J. (eds.) ICA3PP 2018. LNCS, vol. 11337, pp. 178–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05063-4_15

    Chapter  Google Scholar 

  16. Sanjaya, C., et al.: Revenue prediction using artificial neural network. In: 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp. 97–99. IEEE (2010)

    Google Scholar 

  17. Bartoletti, M., et al.: Data mining for detecting Bitcoin Ponzi schemes. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84. IEEE (2018)

    Google Scholar 

  18. Ghahramani, Z.: Unsupervised learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 72–112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_5

    Chapter  MATH  Google Scholar 

  19. Fan, X., Hongbo, X., Liang, Y.: A sock-puppet relation detection method on social network. J. Chin. Inf. Process. 28(6), 162–168 (2014)

    Google Scholar 

  20. LeCun, Y., Bengio, Y.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  21. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  22. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  23. Ke, G., Meng, Q., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  24. A guide to model stacking in practice (2016). http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice

  25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  26. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML, vol. 2 (2016)

    Google Scholar 

  27. mtgox2014leak. https://www.reddit.com/r/mtgoxAddresses/wiki/mtgox2014leak (2014)

  28. Chen, W., Wu, J., Zheng, Z., Chen, C., Zhou, Y.: Market manipulation of bitcoin: evidence from mining the Mt. Gox transaction network. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 964–972. IEEE (2019)

    Google Scholar 

  29. Xing, Y., Li, X., et al.: Research on de-anonymization techniques of bitcoin trading network. A Thesis Submitted to Southeast University For the Academic Degree of Master of Engineering, China (2017)

    Google Scholar 

  30. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted (2008)

    Google Scholar 

  31. Blockchain data API. https://www.blockchain.com/zh/api/blockchain_api (2017)

  32. Arlot, S., Celisse, A., et al.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

    Article  MathSciNet  Google Scholar 

  33. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)

    Google Scholar 

  34. Pearson correlation coefficient. https://en.wikipedia.org/wiki/Pearson_correlation_coefficien (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingguo Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, T. et al. (2020). A New Bitcoin Address Association Method Using a Two-Level Learner Model. In: Wen, S., Zomaya, A., Yang, L.T. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2019. Lecture Notes in Computer Science(), vol 11945. Springer, Cham. https://doi.org/10.1007/978-3-030-38961-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38961-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38960-4

  • Online ISBN: 978-3-030-38961-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics