Loading [a11y]/accessibility-menu.js
A Graph Neural Network-Based Digital Twin for Network Slicing Management | IEEE Journals & Magazine | IEEE Xplore

A Graph Neural Network-Based Digital Twin for Network Slicing Management


Abstract:

Network slicing has emerged as a promising networking paradigm to provide resources tailored for Industry 4.0 and diverse services in 5G networks. However, the increased ...Show More

Abstract:

Network slicing has emerged as a promising networking paradigm to provide resources tailored for Industry 4.0 and diverse services in 5G networks. However, the increased network complexity poses a huge challenge in network management due to virtualized infrastructure and stringent quality-of-service requirements. Digital twin (DT) technology paves a way for achieving cost-efficient and performance-optimal management, through creating a virtual representation of slicing-enabled networks digitally to simulate its behaviors and predict the time-varying performance. In this article, a scalable DT of network slicing is developed, aiming to capture the intertwined relationships among slices and monitor the end-to-end (E2E) metrics of slices under diverse network environments. The proposed DT exploits the novel graph neural network model that can learn insights directly from slicing-enabled networks represented by non-Euclidean graph structures. Experimental results show that the DT can accurately mirror the network behaviour and predict E2E latency under various topologies and unseen environments.
Published in: IEEE Transactions on Industrial Informatics ( Volume: 18, Issue: 2, February 2022)
Page(s): 1367 - 1376
Date of Publication: 29 December 2020

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.